Deskriptive und induktive Statistik mit R

Comelio GmbH
In München, Hamburg, Frankfurt Am Main und an 7 weiteren Standorten

1.700 
Möchten Sie den Bildungsanbieter lieber direkt anrufen?
030 8... Mehr ansehen

Wichtige informationen

  • Intensivseminar berufsbegleitend
  • Anfänger
  • An 10 Standorten
  • 22 Lehrstunden
  • Dauer:
    3 Tage
Beschreibung

Statistik mit R                                                       

Wichtige informationen
Veranstaltungsort(e)

Wo und wann

Beginn Lage
auf Anfrage
Berlin
Goethestr. 34, 13086, Berlin, Deutschland
Plan ansehen
auf Anfrage
Dresden
Rosenstraße 36, 01067, Sachsen, Deutschland
Plan ansehen
auf Anfrage
Düsseldorf
Stadttor 1, Nordrhein-Westfalen, NRW, Deutschland
Plan ansehen
auf Anfrage
Frankfurt Am Main
Mainzer Landstraße 50, 60325, Hessen, Deutschland
Plan ansehen
auf Anfrage
Hamburg
Stadthausbrücke 1-3, 20355, Hamburg, Deutschland
Plan ansehen
Alle ansehen (10)

Meinungen

Zu diesem Kurs gibt es noch keine Meinungen

Was lernen Sie in diesem Kurs?

Allgemeine Kenntnisse der MathematikEinführung in R
Deskriptive Statistik: Eindimensionale Häufigkeitsverteilungen
Induktive Statistik: Wahrscheinlichkeitstheorie
Induktive Statistik: Wahrscheinlichkeitsverteilungen
Analysen für kategoriale Daten
Analysen für metrische Daten

Themenkreis

Kurslevel:
Einsteiger

Zielgruppe:
Datenanalysten

Voraussetzungen:
Allgemeine Kenntnisse der Mathematik

Methode:
Vortrag mit Beispielen und Übungen.

Seminarziele:
R ist eine freie und damit kostenlose Programmiersprache für statistisches Rechnen und statistische Grafiken. R gilt zunehmend als die statistische Standardsprache sowohl im kommerziellen als auch im wissenschaftlichen Bereich. Der Funktionsumfang von R kann durch eine Vielzahl von Paketen erweitert und an spezifische statistische Problemstellungen angepasst werden. Dieses Seminar zeigt Ihnen zunächst, wie sie mit R grundsätzlich arbeiten können und Daten lesen und schreiben sowie Grafiken erzeugen können. Im zweiten Teil beschäftigen Sie sich mit deskriptiver Statistik, d.h. statistischen Lage- und Streuungsmaßen für metrische Daten und Korrelation sowie Kennzahlen für kategoriale Daten. Im dritten Teil lernen Sie die Theorie der Wahrscheinlichkeit sowie die gängigen statistischen Standard-Verteilungen kennen. Danach lernen Sie, typische Fragestellungen für kategoriale und metrische Daten mit Hilfe der induktiven Statistik zu beantworten und so von der Stichprobe auf die Grundgesamtheit zu schließen. Im letzten Teil erstellen Sie statistische Modelle und komplexe Analysen mit Hilfe der Regressionsanalyse, der Varianzanalyse und auch der Clusteranalyse.

Themen:
A. Einführung in R
Dauer:0.5 Tage
Aufrufen und Beenden von R - Fragebogen und Kodierung - Variablen, Vektoren, Matrizen und Tabellen - Data Frames: Ansprechen einzelner Variablen, Filtern von Fällen, Transformation von Daten - Arbeiten mit MS Excel und Text-Dateien für Import/Export - Grafiken und Diagramme erstellen

B. Deskriptive Statistik: Eindimensionale Häufigkeitsverteilungen
Dauer:0.5 Tage
Häufigkeitsverteilungen und grafische Darstellung bei verschiedenen Skalen - Maßzahlen der Häufigkeit: Mittelwerte (Modus, Zentralwert, Quantile, Arithmetisches / geometrisches / harmonisches Mittel - Streuungsmaße: Spannweite, Quartilsabstand, Mittlere absolute Abweichung, empirische Standardabweichung, Variationskoeffizient - Formparameter: Schiefemaße, Wölbungsmaße

C. Induktive Statistik: Wahrscheinlichkeitstheorie
Dauer:0.5 Tage
Grundlagen: Zufallsexperiment, Ergebnismenge und Ereignis, Zusammengesetzte Ereignisse, Absolute und relative Häufigkeiten - Wahrscheinlichkeitsbegriffe: Klassischer, statistischer und subjektiver Wahrscheinlichkeitsbegriff - Rechnen mit Wahrscheinlichkeiten: Axiome und ihre Folgerungen, Bedingte Wahrscheinlichkeit, Multiplikationssatz, Stochastische Unabhängigkeit, Satz der totalen Wahrscheinlichkeit, Bayessches Theorem

D. Induktive Statistik: Wahrscheinlichkeitsverteilungen
Dauer:0.25 Tage
Zufallsvariablen - Diskrete Verteilungen: Binomialverteilung, Poissonverteilung, Hypergeometrische Verteilung, Geometrische Verteilung - Stetige Verteilungen: Gleichverteilung, Exponentialverteilung, Normalverteilung - Maßzahlen: Erwartungswert, Mathematische Erwartung, Varianz

E. Analysen für kategoriale Daten
Dauer:0.5 Tage
Fragestellungen und Analysen sowie statistische Tests - Kommen alle Kategorien gleich häufig vor? - Entsprechen Häufigkeiten bestimmten Vorgaben? - Hat ein Anteil einen bestimmten Wert? - Unterscheiden sich Anteile in zwei oder mehr Gruppen? - Sind zwei kategoriale Variablen unabhängig? - Unterscheidet sich das Risiko in zwei Gruppen?

F. Analysen für metrische Daten
Dauer:0.75 Tage
Fragestellungen und Analysen sowie statistische Tests - Wie kann man die Verteilung von metrischen Daten beschreiben? - Ist der Mittelwert der Grundgesamtheit anders als eine bestimmte Vorgabe? - Folgt eine metrische Variable einer bestimmten Verteilung? - Wie stark ist der Zusammenhang? - Welche Form hat der Zusammenhang? - Unterscheiden sich Mittelwerte? - Wie kann man den zeitlichen Verlauf beschreiben?

Unsere dozenten

Unser Trainer für Statistik und Data-Mining mit R Marco Skulschus studierte in Wuppertal und Paris Ökonomie und arbeitet schon seit mehr als 10 Jahren als Dozent, Fachbuch-Autor zum Thema Datenbanken, Datenanalyse und als Berater für statistische Analyse mit R. Teilnehmer/innen seiner R-Seminare sind Betriebswirte / Volkswirtschaftler, Ingenieure und Doktoranden, die für Statistik und Data Mining R einsetzen wollen.

Veröffentlichungen:

  • "Grundlagen empirische Sozialforschung" (Comelio Medien, ISBN 978-3-939701-23-1)

  • "System und Systematik von Fragebögen" (Comelio Medien, ISBN 978-3-939701-26-2)

  • "Oracle SQL" (Comelio Medien, ISBN 978-3-939701-41-5)

  • "SQL Server 2012: Data Mining und multivariate Verfahren" (Comelio Medien, ISBN 978-3-939701-85-9)

  • "SQL und relationale Datenbanken" (Comelio Medien, ISBN 978-3-939701-52-1)

Erfahrung:
Projekte:
Als Berater konzipiert Herr Skulschus Analysesysteme auf Basis von relationalen Datenbanken und entwickelt dann statistische Modelle und Analysen mit R-Programmierung. Zu seinen Kunden zählen Marktforschungsunternehmen, Marketing-Abteilungen sowie Abteilungen für die Qualitätssicherung und Prozessoptimierung oder auch Forschungseinrichtungen.

Forschung:
Er leitete ein mehrjähriges Forschungsprojekt zur Entwicklung eines Fragebogensystems mit ontologie-basiertem Datenmodell und innovativen Frage-Antwort-Darstellungen. Förderung durch das BMWi und Zusammenarbeit mit verschiedenen Universitäten.

Webseite:

  • http://www.marco-skulschus.de

  • http://de.wikipedia.org/wiki/Marco_Skulschus



Referenzkurse:
  • Dummy
Empfohlen Aufbaukurse:
  • Statistik - Explorative Analysen mit R
  • Statistik - Kategoriale Datenanalyse mit R
  • Statistik - Finanzwissenschaftliche Analyse mit R
  • Statistik - Versicherungswissenschaftliche Analyse mit R
  • Statistik - Zeitreihenanalyse mit R
  • Statistik - Regressionsanalyse mit R
  • Statistik - Statistische Versuchsplanung und Auswertung mit R


Zusätzliche Informationen

R ist eine freie und damit kostenlose Programmiersprache für statistisches Rechnen und statistische Grafiken. R gilt zunehmend als die statistische Standardsprache sowohl im kommerziellen als auch im wissenschaftlichen Bereich. Der Funktionsumfang von R kann durch eine Vielzahl von Paketen erweitert und an spezifische statistische Problemstellungen angepasst werden. Dieses Seminar zeigt Ihnen zunächst, wie sie mit R grundsätzlich arbeiten können und Daten lesen und schreiben sowie Grafiken erzeugen können. Im zweiten Teil beschäftigen Sie sich mit deskriptiver Statistik, d.h. statistischen Lage- und Streuungsmaßen für metrische Daten und Korrelation sowie Kennzahlen für kategoriale Daten. Im dritten Teil lernen Sie die Theorie der Wahrscheinlichkeit sowie die gängigen statistischen Standard-Verteilungen kennen. Danach lernen Sie, typische Fragestellungen für kategoriale und metrische Daten mit Hilfe der induktiven Statistik zu beantworten und so von der Stichprobe auf die Grundgesamtheit zu schließen. Im letzten Teil erstellen Sie statistische Modelle und komplexe Analysen mit Hilfe der Regressionsanalyse, der Varianzanalyse und auch der Clusteranalyse.