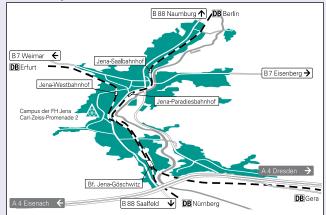


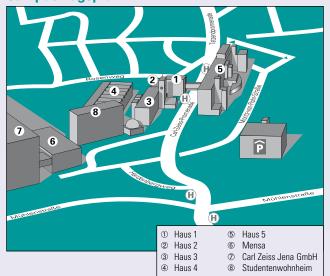
Studienabschluss

Nach erfolgreichem Studienabschluss verleiht die Fachhochschule Jena den international anerkannten akademischen Grad "Bachelor of Engineering".

Zulassungsvoraussetzungen


Zulassungsvoraussetzungen für den Studiengang sind die allgemeine Hochschulreife, die fachgebundene Hochschulreife, die Fachhochschulreife oder eine andere vom Kultusministerium als gleichwertig anerkannte Vorbildung. Studienbewerber ohne abgeschlossene Berufsausbildung in einem einschlägigen Beruf haben ein Vorpraktikum von mindestens 12 Wochen nachzuweisen.

Berufliche Perspektiven


Die Berufsaussichten für Bachelorabsolventen der Mechatronik sind hervorragend, da sie mit ihrer breit angelegten Ausbildung in den Unternehmen, hier besonders in mittelständischen Betrieben, sehr vielseitig einsetzbar sind.

Dekan	Prof. Dr. Martin Garzke
Dekanat	Frau Angelika Erdt Tel.: 03641/205 300 Fax: 03641/205 301 E-Mail: mb@fh-jena.de
Studiengangsleiter	Prof. DrIng. habil. J. Grabow Tel: 03641/205 319 E-Mail: grabow@fh-jena.de

Anfahrtsplan

Campus-Lageplan

Stiftung zur Akkreditierung von Studiengängen in Deutschland

Akkreditierungsrat

erfolgreich akkreditiert von ACQUIN

JENA. Stadt der Wissenschaft 2008

"Theorie und Praxis in einem Paket"

Inhalt und Ziel des Studienganges

Die Mechatronik ist ein multidisziplinäres Gebiet der Ingenieurwissenschaften, das auf den Grundlagen der klassischen Bereiche Maschinen- und Gerätebau, Elektrotechnik/Elektronik und Informatik fußt. Sie beinhaltet die Entwicklung und technische Umsetzung integrierter mechanisch-elektronischer Systeme zur Schaffung neuer Systemeigenschaften.

Mit mechatronischen Systemen ist es möglich, unter Zuhilfenahme von Sensoren Signale aus der Umwelt aufzunehmen, zu verarbeiten, zu interpretieren und darauf aufgaben- und situationsgerecht zu reagieren. Damit sind sie äußerst flexibel und für eine Vielfalt von Aufgaben einsetzbar. Beispiele für mechatronische Produkte sind Systeme zur Maschinen- und Anlagendiagnostik, autonome Roboter, Sicherheitssysteme wie ABS oder ESP, aktive Fahrwerke, digital geregelte Verbrennungsmotoren für Kraftfahrzeuge u.a.m.

Als vorrangige Aufgabe eines Ingenieurs für Mechatronik gilt die optimale Gestaltung derartiger Gesamtsysteme.

Aufgaben und Einsatzgebiete

Ingenieure für Mechatronik sollen durch ihre Ausbildung in der Lage sein, in Entwicklungsteams komplexe, physikalisch-technische Zusammenhänge zu analysieren und mit mathematisch-technischen Grundlagen des Maschinen- und Gerätebaus, der Elektrotechnik/ Elektronik und der Informatik zu beschreiben, zu modellieren, zu simulieren und daraus mechatronische Systeme zu entwickeln. Die Aufgaben eines derartigen Ingenieurs liegen dabei vor allem in der optimalen Gestaltung mechatronischer Gesamtssysteme.

Typische Einsatzgebiete für Absolventen der Mechatronik sind z. B.:

- Entwicklung und Projektierung
- Konstruktion und Simulation
- Versuch und Erprobung
- Produktion/ Fertigung inkl. Recycling
- Management von Projekten
- Marketing und Vertrieb.

	Modul 1		Modul 2		Modul 3		Modul 4		Modul 5	
1. Semester	Mathe	Mathematik 1 Physik/1 Technisches Englisch I/1 Werkstoffe I Technische Mechanik I Elektrot		echnik/1		Informatik/1				
2. Semester	Mathe	Mathematik 2 Physik/2 Technisches Englisch. I/2 Werkstoffe II Technische Mechanik II		Elektro- technik/2	Informatik/2	Elektronik I				
3. Semester	Grundlagen E	nergietechnik	Grundlagen l	Messtechnik	Fertigungs- technik	Technische Mechanik III		Mechanische Bauelemente	Signale und Systeme	Elektron. Bauelemente
4. Semester	Elektr. Mess-+ Prüftechnik	Signalver- arbeitung	Steuerungs- technik	Elektrisch	e Antriebe	Elektronik II		Regelungs- technik/1	Konstr. Mechatronische Systeme/1	Grundl. Hydraulik Pneumatik
5. Semester	Integrierte Praxisphase						Regelungs- technik/2	Konstr. Mechatronische Systeme/2	Schaltungs- simulation	
6. Semester	Feldbus- systeme	3D-CAD	Grundlagen Getriebelehre	Roboter- technik	VVahInflicht I		BWL für Ingenieure	Digitale Rege- lungssysteme	Elektronik- Konstruktion	Digitale Bildverarb.
7. Semester	Grundlagen FEM	Mechatronische Systeme	Mikrorech	entechnik	Wahlpflicht II Bachel			lorarbeit		Kolloquium

Studienablauf

- in den Zeitraum 1. bis 3. Semester: vorrangig Vermittlung mathematischer, naturwissenschaftlicher, technischer Grundlagenmodule sowie einführende Lehrveranstaltungen z.B. zu den Gebieten der Fertigungstechnik, Elektrotechnik, Werkstoffte, Konstruktion und einer Fremdsprache,
- einen Abschnitt 4. bis 6. Semester: fachspezifische weiterführende Ausbildung inkl. einem gesonderten sechzehnwöchigen Praxisaufenthalt im 5. Semester, dessen Zielstellung die Befähigung der Studenten zur Durchführung erster ingenieurwissenschaftlicher Arbeiten ist. Weiterhin sind vorgesehen: Projektarbeiten, vertiefende Studien, Verifizierung und Vertiefung vorhandener fachlicher und methodischer Kenntnisse,
- im 7. Semester neben einer kurzen theoretischen Blockphase die Bachelorarbeit.

Das Studium ist modular aufgebaut und nach Fachsemestern strukturiert. Die Regelstudienzeit beträgt sieben Semester. Wesentliche Module ab den 4. Semester sind:

- Antriebstechnik
- Grundlagen der Mechatronik
- Mess- und Regelungstechnik
- Modellierung und Simulation
- Robotertechnik (Kinematik, Antriebe, Sensoren, Steuerung).

		Wahl	Wahlpflicht II	
Mesomodul I Automatisierungstechnik		Fertigungs- automatisier.	Programmier- bare Logik	Leistungs- elektronik
	Mesomodul II Messtechnik	Qualitäts- management	Indust. Mess- technik	Sensorik

