Deskriptive und Induktive Statistik

Seminar

In Düsseldorf, Hamburg, Frankfurt Am Main und an 7 weiteren Standorten

2.600 € inkl. MwSt.

Beschreibung

  • Kursart

    Intensivseminar berufsbegleitend

  • Niveau

    Anfänger

  • Ort

    An 10 Standorten

  • Unterrichtsstunden

    37h

  • Dauer

    5 Tage

Statistik - Deskriptive und Induktive Statistik                                                   

Standorte und Zeitplan

Lage

Beginn

Berlin
Karte ansehen
Goethestr. 34, 13086

Beginn

auf Anfrage
Dresden (Sachsen)
Karte ansehen
Rosenstraße 36, 01067

Beginn

auf Anfrage
Düsseldorf (Nordrhein-Westfalen, NRW)
Karte ansehen
Stadttor 1

Beginn

auf Anfrage
Frankfurt Am Main (Hessen)
Karte ansehen
Mainzer Landstraße 50, 60325

Beginn

auf Anfrage
Hamburg
Karte ansehen
Stadthausbrücke 1-3, 20355

Beginn

auf Anfrage
Munster (Niedersachsen)
Karte ansehen

Beginn

auf Anfrage
München (Bayern)
Karte ansehen
Baaderstraße 88-90, 80469

Beginn

auf Anfrage
Stuttgart (Baden-Württemberg)
Karte ansehen
Königstraße 10, 70173

Beginn

auf Anfrage
Wien (Australien)
Karte ansehen
Mariahilfer Straße 123, 1060

Beginn

auf Anfrage
Zürich (Schweiz)
Karte ansehen
Seefeldstrasse 69, 8008

Beginn

auf Anfrage
Alle ansehen (10)

Fragen & Antworten

Teilen Sie Ihre Fragen und andere User können Ihnen antworten

Wer möchten Sie Ihre Frage beantworten?

Es werden nur Ihr Name und Ihre Frage veröffentlicht.

Themen

  • Deskriptive Statistik: Korrelationsanalyse
  • Deskriptive Statistik: Regressionsanalyse
  • Induktive Statistik: Wahrscheinlichkeitstheorie
  • Induktive Statistik: Statistisches Testen

Inhalte

Kurslevel:
Einsteiger

Zielgruppe:
Datenanalysten

Voraussetzungen:
Allgemeine Kenntnisse der Mathematik

Methode:
Vortrag mit Beispielen und Übungen.

Seminarziele:
Die deskriptive Statistik ermöglicht es, vorliegende Daten in geeigneter Weise zu beschreiben und zusammenzufassen. Mit ihren Methoden verdichtet man quantitative Daten zu Tabellen, graphischen Darstellungen und Kennzahlen. Man lernt in einem ersten Teil Lagemaße (zentrale Tendenz einer Häufigkeitsverteilung, Mittelwert, Median, Modus oder Modalwert, Quantile (Quartile, Dezile), Schiefe und Exzess einer Verteilung) und die Streuungsmaße (Varianz, Standardabweichung, Variationsbreite/Spannweite, Interquartilbereiche, Mittlere absolute Abweichung) und Zusammenhangsmaße sowie Konzentrationsmaße kennen. In einem zweiten Teil lernen die TeilnehmerInnen dann die lineare und nicht-lineare Regressionsanalyse für metrische Daten kennen. Die induktive Statistik hingegen leitet aus den Daten einer Stichprobe Eigenschaften einer Grundgesamtheit ab. Die Wahrscheinlichkeitstheorie liefert die Grundlagen für die erforderlichen Schätz- und Testverfahren. Sie gibt der deskriptiven Statistik die Werkzeuge an die Hand, mit deren Hilfe diese aufgrund der beobachteten Daten begründete Rückschlüsse auf deren zu Grunde liegendes Verhalten ziehen kann. Im dritten Teil dieses Seminars lernen die TeilnehmerInnen zunächst die Wahrscheinlichkeitstheorie kennen und leiten dann aus Stichproben mit statistischen Testverfahren Informationen über die Grundgesamtheit ab.

Themen:
A. Deskriptive Statistik: Eindimensionale Häufigkeitsverteilungen
Dauer:1 Tag
Häufigkeitsverteilungen und grafische Darstellung bei verschiedenen Skalen - Maßzahlen der Häufigkeit: Mittelwerte (Modus, Zentralwert, Quantile, Arithmetisches / geometrisches / harmonisches Mittel - Streuungsmaße: Spannweite, Quartilsabstand, Mittlere absolute Abweichung, empirische Standardabweichung, Variationskoeffizient - Formparameter: Schiefemaße, Wölbungsmaße

B. Deskriptive Statistik: Korrelationsanalyse
Dauer:0.75 Tage
Koeffizienten bei nominal skalierten Merkmalen: Quadratische Kontingenz, Phi-Koeffizient, Kontingenzkoeffizient - Koeffizienten bei ordinal skalierten Merkmalen: Rangkorrelationskoeffizient nach Spearman - Koeffizienten bei metrisch skalierten Merkmalen: Empirische Kovarianz, Empirischer Korrelationskoeffizient nach Bravais-Pearson

C. Deskriptive Statistik: Regressionsanalyse
Dauer:0.5 Tage
Lineare und nicht-lineare Regression - Lineare Einfach-Regression: Berechnung der Regressionsgeraden und des Determinationskoeffizienten - Vorhersagen und Residualanalyse

D. Induktive Statistik: Wahrscheinlichkeitstheorie
Dauer:0.75 Tage
Grundlagen: Zufallsexperiment, Ergebnismenge und Ereignis, Zusammengesetzte Ereignisse, Absolute und relative Häufigkeiten - Wahrscheinlichkeitsbegriffe: Klassischer, statistischer und subjektiver Wahrscheinlichkeitsbegriff - Rechnen mit Wahrscheinlichkeiten: Axiome und ihre Folgerungen, Bedingte Wahrscheinlichkeit, Multiplikationssatz, Stochastische Unabhängigkeit, Satz der totalen Wahrscheinlichkeit, Bayessches Theorem - Kombinatorik: Permutationen, Kombinationen mit und ohne Wiederholung, Eigenschaften des Binomialkoeffizienten, Urnenmodell

E. Induktive Statistik: Wahrscheinlichkeitsverteilungen
Dauer:1 Tag
Zufallsvariablen - Diskrete Verteilungen: Binomialverteilung, Poissonverteilung, Hypergeometrische Verteilung, Geometrische Verteilung - Stetige Verteilungen: Gleichverteilung, Exponentialverteilung, Normalverteilung - Maßzahlen: Erwartungswert, Mathematische Erwartung, Varianz

F. Induktive Statistik: Statistisches Testen
Dauer:1 Tag
Intervallschätzungen: Konfidenzintervall für den Mittelwert und für die Varianz einer Normalverteilung sowie für den Anteilswert - Parametertests: Test für Mittelwert einer Normalverteilung, Test für Anteilswert, Fehler beim Testen, Test für Varianz, Differenztests für den Mittelwert und Anteilswert, Quotiententest für die Varianz - Verteilungstests: Chi-Quadrat-Anpassungstest, Chi-Quadrat-Unabhängigkeitstest (Kontingenztest)

Unsere dozenten
Unser Statistik- und Data-Mining-Trainer Marco Skulschus studierte in Wuppertal und Paris Ökonomie und arbeitet schon seit mehr als 10 Jahren als Dozent, Fachbuch-Autor zum Thema Datenbanken und als Business Intelligence-Berater. Zu seinen Kunden zählen Marktforschungsunternehmen oder Behörden wie der Deutsche Bundesrat sowie Abteilungen für die Qualitätssicherung und Prozessoptimierung.

Veröffentlichungen:

  • "Grundlagen empirische Sozialforschung" (Comelio Medien, ISBN 978-3-939701-23-1)

  • "System und Systematik von Fragebögen" (Comelio Medien, ISBN 978-3-939701-26-2)

  • "Oracle SQL" (Comelio Medien, ISBN 978-3-939701-41-5)

  • "SQL Server 2012: Data Mining und multivariate Verfahren" (Comelio Medien, ISBN 978-3-939701-85-9)

  • "SQL und relationale Datenbanken" (Comelio Medien, ISBN 978-3-939701-52-1)

Erfahrung:
Projekte: Als Berater und Projektleiter konzipiert Herr Skulschus Business Intelligence-Systeme auf Basis von OLAP und Data Warehouse-Technologien mit MS SQL Server und Oracle mit Berichtskomponenten im Intranet oder MS Excel, statistische Analysen und Data Mining-Modulen. Je nach Aufgabe setzt er R, IBM SPSS oder Minitab ein.

Forschung: Er leitete ein mehrjähriges Forschungsprojekt zur Entwicklung eines Fragebogensystems mit ontologie-basiertem Datenmodell und innovativen Frage-Antwort-Darstellungen. Förderung durch das BMWi und Zusammenarbeit mit verschiedenen Universitäten.

Zertifizierung:
Marco Skulschus ist zertifiziert als "Microsoft Certified Trainer" und "Oracle Certified Associate" und hat die ComptiaCTT+ Prüfung absolviert.

Webseite:

  • http://www.marco-skulschus.de

  • http://de.wikipedia.org/wiki/Marco_Skulschus



Referenzkurse:
  • Dummy

Zusätzliche Informationen

Die deskriptive Statistik ermöglicht es, vorliegende Daten in geeigneter Weise zu beschreiben und zusammenzufassen. Mit ihren Methoden verdichtet man quantitative Daten zu Tabellen, graphischen Darstellungen und Kennzahlen. Man lernt in einem ersten Teil Lagemaße (zentrale Tendenz einer Häufigkeitsverteilung, Mittelwert, Median, Modus oder Modalwert, Quantile (Quartile, Dezile), Schiefe und Exzess einer Verteilung) und die Streuungsmaße (Varianz, Standardabweichung, Variationsbreite/Spannweite, Interquartilbereiche, Mittlere absolute Abweichung) und Zusammenhangsmaße sowie Konzentrationsmaße kennen. In einem zweiten Teil lernen die TeilnehmerInnen dann die lineare und nicht-lineare Regressionsanalyse für metrische Daten kennen. Die induktive Statistik hingegen leitet aus den Daten einer Stichprobe Eigenschaften einer Grundgesamtheit ab. Die Wahrscheinlichkeitstheorie liefert die Grundlagen für die erforderlichen Schätz- und Testverfahren. Sie gibt der deskriptiven Statistik die Werkzeuge an die Hand, mit deren Hilfe diese aufgrund der beobachteten Daten begründete Rückschlüsse auf deren zu Grunde liegendes Verhalten ziehen kann. Im dritten Teil dieses Seminars lernen die TeilnehmerInnen zun

Deskriptive und Induktive Statistik

2.600 € inkl. MwSt.