Regressionsanalyse mit R

Seminar

In München, Hamburg, Frankfurt Am Main und an 7 weiteren Standorten

1.600 € inkl. MwSt.

Beschreibung

  • Kursart

    Intensivseminar berufsbegleitend

  • Niveau

    Anfänger

  • Ort

    An 10 Standorten

  • Unterrichtsstunden

    22h

  • Dauer

    3 Tage

Statistik - Regressionsanalyse mit R                                                    

Standorte und Zeitplan

Lage

Beginn

Berlin
Karte ansehen
Goethestr. 34, 13086

Beginn

auf Anfrage
Dresden (Sachsen)
Karte ansehen
Rosenstraße 36, 01067

Beginn

auf Anfrage
Düsseldorf (Nordrhein-Westfalen, NRW)
Karte ansehen
Stadttor 1

Beginn

auf Anfrage
Frankfurt Am Main (Hessen)
Karte ansehen
Mainzer Landstraße 50, 60325

Beginn

auf Anfrage
Hamburg
Karte ansehen
Stadthausbrücke 1-3, 20355

Beginn

auf Anfrage
Munster (Niedersachsen)
Karte ansehen

Beginn

auf Anfrage
München (Bayern)
Karte ansehen
Baaderstraße 88-90, 80469

Beginn

auf Anfrage
Stuttgart (Baden-Württemberg)
Karte ansehen
Königstraße 10, 70173

Beginn

auf Anfrage
Wien (Australien)
Karte ansehen
Mariahilfer Straße 123, 1060

Beginn

auf Anfrage
Zürich (Schweiz)
Karte ansehen
Seefeldstrasse 69, 8008

Beginn

auf Anfrage
Alle ansehen (10)

Fragen & Antworten

Teilen Sie Ihre Fragen und andere User können Ihnen antworten

Wer möchten Sie Ihre Frage beantworten?

Es werden nur Ihr Name und Ihre Frage veröffentlicht.

Themen

  • Grundlagen der StatistikEinfache lineare Regression
  • Multiple lineare Regression
  • Lineare Regression mit vielen Regressoren
  • Nichtlineare Regression
  • Nichtparametrische Regression
  • Quantilsregression
  • Logistische Regression

Inhalte

Kurslevel:
Einsteiger

Zielgruppe:
Datenanalysten

Voraussetzungen:
Grundlagen der Statistik

Methode:
Vortrag mit Beispielen und Übungen.

Seminarziele:
Regressionsanalysen sind statistische Analyseverfahren mit dem Ziel, Beziehungen zwischen einer abhängigen und einer oder mehreren unabhängigen Variablen festzustellen. Sie wird insbesondere verwendet, wenn Zusammenhänge quantitativ zu beschreiben oder Werte der abhängigen Variablen zu prognostizieren sind. Mit R stehen eine Vielzahl von Analysemöglichkeiten bereit. Dieses Seminar zeigt Ihnen ausgehend von der einfachen linearen Regression, wie Sie lineare und nichtlineare Regressionsmodelle mit mehreren Variablen ableiten und für Prognosen nutzen können. Dabei werden auch die Themen robuste Regression und die Regression mit vielen Regressoren behandelt. Neben metrischen Zielvariablen sehen Sie auch, wie Sie mit logistischer Regression die Vorhersage von kategorialen Zielgrößen modellieren können. Das Seminar geht dann zusätzlich auch auf fortgeschrittene Themen wie semi- und nichtparametrische Regression oder Quantilsregression ein.

Themen:
A. Einfache lineare Regression
Dauer:0.25 Tage
Regression als Deskription - Regressionsgerade - Bestimmtheitsmaß - Schätzen und Testen im einfachen lineare Regressionsmodell: Konfidenzintervalle, Prognoseintervalle, Tests - Residualanalyse

B. Multiple lineare Regression
Dauer:0.75 Tage
Das klassische lineare Regressionsmodell: Parameterschätzung, Tests, Konfidenz- und Prognoseintervalle, Variablenselektion, Modell-Check - Das allgemeine lineare Regressionsmodell: KQ- und GKQ-Schätzung, Heteroskedastische Störungen, Clusterweise Regression - Multivariate multiple Regression: Das multivariate lineare Modell, Parameterschätzung

C. Lineare Regression mit vielen Regressoren
Dauer:0.5 Tage
Hauptkomponentenregression - Partial Least Squares-Regression - Reduzierte Rang-Regression

D. Nichtlineare Regression
Dauer:0.25 Tage
Formen nichtlinearer Abhängigkeiten - Linearisierbare Zusammenhänge - Polynomiale Regressionsmodelle - Inferenzmethoden

E. Nichtparametrische Regression
Dauer:0.5 Tage
Kernregression und Nächste-Nachbarn - Lokale polynomiale Glättung - Spline-Regression - Additive Modelle - Regressionsbäume

F. Quantilsregression
Dauer:0.25 Tage
Quantilsfunktion - Regressionsquantile - Parameterschätzung

G. Logistische Regression
Dauer:0.5 Tage
Binomialverteilte Zielgrößen und ihre Modellschätzung - Logitmodelle für mehrkategoriale Zielgrößen - Schätzen und Testen für mehrkategoriale Modelle

Unsere dozenten

Unser Trainer für Statistik und Data-Mining mit R Marco Skulschus studierte in Wuppertal und Paris Ökonomie und arbeitet schon seit mehr als 10 Jahren als Dozent, Fachbuch-Autor zum Thema Datenbanken, Datenanalyse und als Berater für statistische Analyse mit R. Teilnehmer/innen seiner R-Seminare sind Betriebswirte / Volkswirtschaftler, Ingenieure und Doktoranden, die für Statistik und Data Mining R einsetzen wollen.

Veröffentlichungen:

  • "Grundlagen empirische Sozialforschung" (Comelio Medien, ISBN 978-3-939701-23-1)

  • "System und Systematik von Fragebögen" (Comelio Medien, ISBN 978-3-939701-26-2)

  • "Oracle SQL" (Comelio Medien, ISBN 978-3-939701-41-5)

  • "SQL Server 2012: Data Mining und multivariate Verfahren" (Comelio Medien, ISBN 978-3-939701-85-9)

  • "SQL und relationale Datenbanken" (Comelio Medien, ISBN 978-3-939701-52-1)

Erfahrung:
Projekte:
Als Berater konzipiert Herr Skulschus Analysesysteme auf Basis von relationalen Datenbanken und entwickelt dann statistische Modelle und Analysen mit R-Programmierung. Zu seinen Kunden zählen Marktforschungsunternehmen, Marketing-Abteilungen sowie Abteilungen für die Qualitätssicherung und Prozessoptimierung oder auch Forschungseinrichtungen.

Forschung:
Er leitete ein mehrjähriges Forschungsprojekt zur Entwicklung eines Fragebogensystems mit ontologie-basiertem Datenmodell und innovativen Frage-Antwort-Darstellungen. Förderung durch das BMWi und Zusammenarbeit mit verschiedenen Universitäten.

Webseite:

  • http://www.marco-skulschus.de

  • http://de.wikipedia.org/wiki/Marco_Skulschus



Referenzkurse:
  • Statistik mit R
  • Dummy

Zusätzliche Informationen

Regressionsanalysen sind statistische Analyseverfahren mit dem Ziel, Beziehungen zwischen einer abhängigen und einer oder mehreren unabhängigen Variablen festzustellen. Sie wird insbesondere verwendet, wenn Zusammenhänge quantitativ zu beschreiben oder Werte der abhängigen Variablen zu prognostizieren sind. Mit R stehen eine Vielzahl von Analysemöglichkeiten bereit. Dieses Seminar zeigt Ihnen ausgehend von der einfachen linearen Regression, wie Sie lineare und nichtlineare Regressionsmodelle mit mehreren Variablen ableiten und für Prognosen nutzen können. Dabei werden auch die Themen robuste Regression und die Regression mit vielen Regressoren behandelt. Neben metrischen Zielvariablen sehen Sie auch, wie Sie mit logistischer Regression die Vorhersage von kategorialen Zielgrößen modellieren können. Das Seminar geht dann zusätzlich auch auf fortgeschrittene Themen wie semi- und nichtparametrische Regression oder Quantilsregression ein.

Regressionsanalyse mit R

1.600 € inkl. MwSt.